Insect control on stored malting barley with diatomaceous earth in southern Brazil

Mana Marcelma Millan Rupp¹,², Flavio Antonio Lazzani² and Sonia Maria Noemberg Lazzan²

Abstract
Alternative methods for controlling insects on stored malting barley were tested in southern Brazil. Three treatments were compared: a salt water diatomaceous earth (DE) formulation from Brazil, at 1500g/t, applied as dust; a slurry DE application, at 300g/t; and a mixture of 10 ml/t of deltamethrin plus 15ml of fentrothion/t, all applied over the grain on the conveyor belt. Insects were sampled with plastic probe traps from the three treatments plus a control stored for six months in 90 t metallic bins, every 15 days. On the same date, grain samples were taken for moisture determination, percentage of germination and protein content. The silos treated with the DE formulation and with the mixture of insecticides had very low numbers of insects, with no significant difference between them. On the other hand, the control silo presented high numbers of insects, mostly Sitophilus spp. The results suggest that DE can be used as an alternative control of stored grain insects on malting barley, either as dust or slurry, with the advantage of being non toxic, without any chemical residues, and no resistance.

Introduction
Inadequate storage of barley seeds and grain malt results in high qualitative and quantitative losses for the beer industry. Insects and their fragments, fungi, and mycotoxins contribute for the low quality and reduction of dry matter of stored products (Christensen & Kaufmann 1969).

Stored product insects are characterised by high reproductive potential with many generations in a short period of time. These characteristics associated with continuous insecticide application can select for resistant populations and cause resurgence of occasional pests.

Integrated pest management, including monitoring and sound control measures, is the best strategy for maintaining the quality of a product (Almeida 1989). Alternative control measures have been studied in order to reduce the number of treatments and to avoid insecticide resistance and residues in the grains and sub-products. Inert dusts, such as diatomaceous earth (DE) show great potential as an alternative measure. It is a sediment material formed by the deposition of testes of diatomaceous algae, composed mainly of hydrated amorphous silica (Alexander et al. 1944, Wigglesworth 1947, Ebeling 1971).

This experiment was designed to evaluate the effect of a commercial formulation of Brazilian DE on insects of stored barley, to compare it to the conventional chemical treatment, and indicate its potential as an alternative control measure.

Materials and Methods

The experiments were carried in four 90 t silos filled with barley seeds, at a large beer company in the south of Paraná, Brazil. The following treatments were applied on the conveyor belt: a powder of 1500 g/t of inert dust (Keepdry®); a slurry of 1500 ml/t of water solution of inert dust (300g/t); conventional chemical treatment of 10 ml of deltamethrin and 15ml of fentrothion/t; and a control without any application.

Samples were taken every 15 days with probang traps inserted into the seed bulk, at different depths, during 171 days. The kind and number of insects, germination level, moisture, and protein level of the barley were evaluated.

Results and Discussion

The number of insects caught in the traps, in each treatment is presented on Table 1. In the silos treated with...
Keepdry® (dust and slurry) and with deltamethrin/ fenitrothion, the insect populations were significantly reduced compared to the control. The most abundant insect was *Sitophilus* spp., representing 94% of the total number of insects trapped on the control silo (Table 2). Moisture, germination and protein were kept constant during the period. The results of this research agree with other authors working with inert dust formulations applied as dust or slurry (Subramanyam et al. 1994, Golob 1997).

Table 1. Number of insects detected in malting barley silos after treatment with inert dust and conventional insecticides.

<table>
<thead>
<tr>
<th>Days after treatment</th>
<th>Dust* 1,500g/t</th>
<th>Slurry* 300g/t</th>
<th>Insecticides 25ml/t* *</th>
<th>Control</th>
<th>Total number of insects</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>78</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>18</td>
<td>31</td>
</tr>
<tr>
<td>91</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>114</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>177</td>
<td>177</td>
</tr>
<tr>
<td>142</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>171</td>
<td>175</td>
</tr>
<tr>
<td>155</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>787</td>
<td>787</td>
</tr>
<tr>
<td>171</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>458</td>
<td>459</td>
</tr>
<tr>
<td>Totals</td>
<td>24</td>
<td>7</td>
<td>0</td>
<td>1,764</td>
<td>1,795</td>
</tr>
</tbody>
</table>

* Diatomaceous earth Keepdry®

** 10 ml of deltamethrin + 15 ml of fenitrothion / t

Table 2. Number of individuals of each insect species collected with probing trap on malting barley in the control silo.

<table>
<thead>
<tr>
<th>Days after treatment</th>
<th>Sitophilus spp</th>
<th>Oryzaephilus surinamensis</th>
<th>Tribolium spp.</th>
<th>Total number of insects</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>05</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>03</td>
</tr>
<tr>
<td>43</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>58</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>03</td>
</tr>
<tr>
<td>78</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>91</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>101</td>
<td>47</td>
<td>1</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>114</td>
<td>51</td>
<td>10</td>
<td>1</td>
<td>62</td>
</tr>
<tr>
<td>128</td>
<td>173</td>
<td>4</td>
<td>0</td>
<td>177</td>
</tr>
<tr>
<td>142</td>
<td>114</td>
<td>57</td>
<td>0</td>
<td>171</td>
</tr>
<tr>
<td>155</td>
<td>769</td>
<td>18</td>
<td>0</td>
<td>787</td>
</tr>
<tr>
<td>171</td>
<td>452</td>
<td>5</td>
<td>1</td>
<td>458</td>
</tr>
<tr>
<td>Total</td>
<td>1,662 (94.2%)</td>
<td>98 (5.6%)</td>
<td>4 (0.2%)</td>
<td>1,764</td>
</tr>
</tbody>
</table>
Conclusion

Although there was no significant difference between the treatments with the inert dust and the chemical, the former has the advantage of being efficient against insects, but without selecting for resistance or leaving toxic residues in the barley seeds for malting. Also, the application does not require special equipment and can be applied either as a powder or slurry. Inert dust can be used alone or associated with other products as alternative control measures in IPM of stored product insects.

Acknowledgements

This research was supported by a CNPq grant; the senior author holds a fellowship from CAPES Foundation - Brazilian Government. We would like to thanks Dr. Ralph Holzenthal, from the University of Minnesota, for reviewing the manuscript.

References

White, N. D. G. and Loschiavo, S. R 1989 Factors affecting survival of the merchant grain beetle (Coleoptera: Cucujidae) and the confused flour beetle (Coleoptera: Tenebrionidae) exposed to silica aerogel. Journal of Economic Entomology 82:960–969.